Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по учебной работе

Н.В.Лобов

« <u>06</u> » октября 20 <u>21</u> г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Энерготехнология химических производств		
-	(наименование)		
Форма обучения:	очная		
	(очная/очно-заочная/заочная)		
Уровень высшего образова	ния: бакалавриат		
	(бакалавриат/специалитет/магистратура)		
Общая трудоёмкость:	108 (3)		
	(часы (ЗЕ))		
Направление подготовки:	18.03.01 Химическая технология		
	(код и наименование направления)		
Направленность:	Химическая технология (общий профиль, СУОС)		
	(наименование образователя ной программы)		

1. Общие положения

1.1. Цели и задачи дисциплины

Целью является освоение основ технической термодинамики, и методов расчета тепловыделяющих и теплоиспользующих устройств, циклических процессов преобразования теплоты в работу и работы в теплоту; современных методов анализа и оптимизации процессов, связанных с выработкой и потреблением энергии, а также оптимизации работы отдельных химикотехнологических аппаратов и установок в целом, являющихся энерготехнологическими системами.

Задачи дисциплины:

- изучение теоретических основ технической термодинамики закрытых и открытых систем;
- изучение принципов работы энерготехнологических устройств и систем на основе законов термодинамики;
- изучение методов оптимизации работы энерготехнологических устройств и систем на основе эксергетического метода анализа;
- формирование навыков выполнения расчетов термодинамических систем, включая процессы с фазовыми переходами.

1.2. Изучаемые объекты дисциплины

- основные термодинамические законы и соотношения, описывающие процессы преобразования теплоты в работу и работы в теплоту;
- устройство и принцип действия основных энерготехнологических аппаратов и устройств;
- диаграммный метод расчета основных энерготехнологических процессов и аппаратов;
- приобретение навыков расчета и моделирования основных термодинамических процессов, связанных с переходами энергии от одного тела к другому в виде теплоты или работы;
- приобретение навыков эксергетического метода анализа энерготехнологической системы с целью оптимизации процесса.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
-------------	----------------------	---	--	--------------------

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-2.1	ИД-1ПК-2.1	Знать: - основные термодинамические законы и уравнения, описывающие процессы различного типа; - устройство и принцип действия основных энерготехнологических аппаратов и устройств; - основные принципы неравновесной термодинамики, позволяющие разрабатывать технологические схемы аппаратов и систем с максимальным использованием свободной энергии.	Знает методы проведения теоретического анализа при обосновании оптимальных технологических параметров и математического моделирования для описания технологических процессов.	Зачет
ПК-2.1	ИД-2ПК-2.1	Уметь производить расчеты материальных и тепловых потоков в термодинамических аппаратах и системах, в том числе с фазовыми переходами рабочего вещества, а также энергетических потерь при протекании физикохимических процессов.	Умеет использовать методы проведения теоретического анализа и математического моделирования.	Индивидуальн ое задание
ПК-2.1	ИД-3ПК-2.1	Владеть навыками расчетов основных теплотехнических процессов, в том числе потерь эксергии на каждой стадии процесса.	Владеет навыками проведения теоретического анализа при обосновании оптимальных технологических параметров и математического моделирования для описания ХТП.	Индивидуальн ое задание

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме:	36	36
1.1. Контактная аудиторная работа, из них:	16	16
- лекции (Л) - лабораторные работы (ЛР)	16	16
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	18	18
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	72	72
2. Промежуточная аттестация		
Экзамен		
Дифференцированный зачет		
Зачет	9	9
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	108	108

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	ПЗ	CPC
7-й семес	гр			
Введение	1	0	0	0
Значение энерготехнологической технологической подготовки инженеров химиков-технологов. Виды и источники энергии. Особенности потребления энергии в химической промышленности. Взаимосвязь технологии и энергетики в химических производствах. Проблема экономии энергоресурсов.				

Наименование разделов дисциплины с кратким содержанием		Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
Основные положения технической термодинамики	4	0	6	18
Тема 1. Основные понятия и определения. Первый закон термодинамики для закрытой системы. Энергия, теплота, работа, температура, энтропия, понятие потенциала. Большой потенциал, энтальпия, изобарный и изохорный потенциалы. Параметры состояния термодинамической системы; уравнение состояния; расчет массовой газовой постоянной. Тема 2. Термодинамические процессы в идеальном газе: изохорный, уравнение Майера, изотермический, изобарный, адиабатный. Понятие теплоемкости. Изменение энтропии в различных процессах. Связь энтропии и теплоты процесса. Тема 3. Эксергия. Неравновесные процессы. Связь				
скорости проведения термодинамического процесса с				
необратимыми потерями энергии.				
Уравнение первого закона термодинамики для	4	0	8	24
открытых систем				
Тема 4. Вывод уравнения первого закона термодинамики для потока. Частные случаи применения уравнения для потока: теплообменник, тепловой двигатель, компрессор, дросселирование, сопло и диффузор, эффект Джоуля-Томпсона. Тема 5. Скорость истечения газов из диффузора и сопла. Сверхзвуковое истечение газа из сопла. Сопло Лаваля. Тема 6. Циклические процессы. Вычисление параметров угловых точек циклических процессов. Диаграммный метод расчета. Тема 7. Циклические процессы: цикл ДВС, цикл газотурбинной установки, компрессионный холодильный цикл, тепловой насос, прямой цикл Карно.	4	0	4	22
Энерготехнологические агрегаты	4	0	4	22
Тема 8. Технологические печи. Принципы расчета конвекционной и радиантной камер. Устройства для утилизации низкопотенциальной теплоты. Абсорбционная холодильная машина. Тема 9. Тепловая труба. Вихревая труба. Дымовая труба. Детандер (турбодетандер). Принцип утилизации энергии отходящих газовых потоков высокого давления.				
Термодинамические устройства и методы	3	0	0	8
оптимизации Тема 10. Алгоритм поиска способов экономии энергоресурсов. Использование второго закона термодинамики для оптимизации технологических процессов с целью повышения эффективности использования свободной энергии.				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	ПЗ	CPC
Тема 11. Глобальные проблемы энерготехнологии: глобальное потепление, энергетическая эффективность различных источников энергии в разрезе влияния на окружающую природную среду.				
ИТОГО по 7-му семестру	16	0	18	72
ИТОГО по дисциплине	16	0	18	72

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Расчет фазового состояния смеси углеводородов.
2	Расчет температуры верха и низа ректификационной колонны с помощью уравнения Трегубова.
3	Расчет аммиачной холодильной установки.
4	Расчет эксергетичекого КПД аммиачной холодильной установки на каждой стадии процесса. Построение поточной диаграммы КПД процесса.
5	Расчет «вечного двигателя» на основе сопряженных циклических термодинамических процессов. Расчет устройства для пневматического выстрела вверх грузом заданной массы (Моделирование на компьютере).
6	Поверочный расчет трубчатой технологической печи методом самосогласования. Конвекционная и радиантная камеры.

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение практических занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание	Количество
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в
	год издания, количество страниц)	библиотеке
	1. Основная литература	
1	Кудинов В. А. Теплотехника: учебное пособие для вузов / В. А. Кудинов, Э. М. Карташов, Е. В. Стефанюк Москва: КУРС, ИНФРА-М, 2019.	1
2	Теплотехника : учебник для вузов / А. А. Александров [и др.] Москва: Изд-во МГТУ, 2011.	1
3	Теплотехника : учебник для вузов / А. П. Баскаков [и др.] Москва: БАСТЕТ, 2010.	11
4	Теплотехника : учебник для вузов / М. Г. Шатров [и др.] Москва: Академия, 2011.	2
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Кириллин В. А. Техническая термодинамика: учебник для вузов / В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин Москва: Энергия, 1974.	6
2	Кириллин В. А. Техническая термодинамика: учебник для вузов / В. А. Кириллин, В. В. Сычёв, А. Е. Шейндлин Москва: Энергоатомиздат, 1983.	17
3	Лейтес И.Л. Теория и практика химической энерготехнологии / И.Л.Лейтес, М.Х.Сосна, В.П.Семенов М.: Химия, 1988.	2
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	 ИНЫ
1	Кириллин В. А. Техническая термодинамика / В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин М.: Наука, 1979.	2
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
1	Саулин Д. В. Энерготехнология химических производств: конспект лекций / Д. В. Саулин Пермь: Изд-во ПНИПУ, 2016.	33
		,

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная литература	Шаров, Ю. И. Техническая термодинамика: учебнометодическое пособие / Ю. И. Шаров, О. К. Григорьева Новосибирск: Новосибирскии государственныи техническии университет, 2019.	http://www.iprbookshop.ru/e pd-reader? publicationId=99225	локальная сеть; авторизованный доступ
Методические указания для студентов по освоению дисциплины	Федюнина Т. В. Основы теплотехники: учебное пособие для обучающихся учреждений высшего и среднего профессионального образования технической направленности / Федюнина Т. В., Наумова О. В., Катков Д. С., Саратов: Саратовский ГАУ, 2019.	https://e.lanbook.com/reader/book/137512/#1	локальная сеть; авторизованный доступ
Основная литература	Саулин Д. В. Теоретические основы энерготехнологии химических производств: конспект лекций / Д. В. Саулин Пермь: Изд-во ПГТУ, 1999.	https://elib.pstu.ru/docview/?fDocumentId=2948	локальная сеть; авторизованный доступ
Учебно- методическое обеспечение самостоятельной работы студентов	Саулин Д. В. Энерготехнология химических производств: конспект лекций / Д. В. Саулин Пермь: Изд-во ПНИПУ, 2016.	https://elib.pstu.ru/docview/? fDocumentId=2796	локальная сеть; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/
Информационно-справочная система нормативно- технической документации "Техэксперт: нормы, правила, стандарты и законодательства России"	https://техэксперт.сайт/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
	Ноутбук ACER Extensa 7620-G -3A2G25Mi, инвентарный № 0478200	1
	Ноутбук ACER Extensa 7620-G -3A2G25Mi, инвентарный № 0478200	1
занятие	Персональные компьютеры (локальная компьютерная сеть): Монитор, Мышь, Клавиатура, Системный блок, Процессор, Материнская плата, Оперативная память.	10

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Энерготехнология химических производств»

Приложение к рабочей программе дисциплины

Направление подготовки: 18.03.01 Химическая технология

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Химические технологии

Форма обучения: Очная/Заочная

Курс: 4/5 Семестр: 7/9

Трудоёмкость:

Кредитов по рабочему учебному плану: 3 ЗЕ Часов по рабочему учебному плану: 108 ч.

Форма промежуточной аттестации:

Зачет: 1 семестр / 1 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по (приложением) является частью К рабочей дисциплине дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (7-го (9-го) семестра учебного плана) и разбито на 5 учебных модулей. В каждом модуле предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля					
		Текущий		жный	Итоговый		
		то	К3	Т/КР	Диф. зачёт		
Усвоенные знания							
31. Знать: - основные термодинамические	C1		К31	KP1	TB		
законы и уравнения, описывающие процессы	C2						
различного типа;	C3						
- устройство и принцип действия основных							
энерготехнологических аппаратов и							
устройств;							
- основные принципы неравновесной							
термодинамики, позволяющие разрабатывать							
технологические схемы аппаратов и систем с							
максимальным использованием свободной							
энергии.							

Освоенные умения							
У1 Уметь производить расчеты		K31	ПЗ				
материальных и тепловых потоков в		K32					
термодинамических аппаратах и системах, в		К33					
том числе с фазовыми переходами рабочего							
вещества, а также энергетических потерь при							
протекании физико-химических процессов.							
Приобретенные владения							
В1. Владеть навыками расчетов основных		К34	ПЗ				
теплотехнических процессов, в том числе		K35					
потерь эксергии на каждой стадии процесса.		К36					

С — собеседование по теме; ТО — коллоквиум (теоретический опрос); КЗ — кейс-задача (индивидуальное задание); ОЛР — отчет по лабораторной работе; Т/КР — рубежное тестирование (контрольная работа); ТВ — теоретический вопрос; ПЗ — практическое задание; КЗ — комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде дифференцированного зачета, проводимая с учетом результатов текущего и рубежного контроля.

1. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет обеспечение целью максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам образования программам бакалавриата, высшего специалитета магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль

Текущий контроль усвоения материала в форме выборочного теоретического опроса студентов (собеседования) проводится по разделам 2, 3, 4. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме рубежной контрольной работы после изучения учебных модулей дисциплины.

2.2.1. Защита индивидуального задания

Всего запланировано 6 индивидуальных практических заданий. Темы практических занятий приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 1 рубежная контрольная работа (КР) после освоения студентами учебных модулей дисциплины.

Типовые задания КР:

- 1. Виды и источники энергии.
- 2. Термодинамические процессы в идеальном газе: изохорный, уравнение Майера.
- 3. Изменение энтропии в различных процессах.
- 4. Сверхзвуковое истечение газа из сопла.
- 5. Прямой цикл Карно.
- 6. Устройства для утилизации низкопотенциальной теплоты.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме зачета. Зачет по дисциплине основывается на результатах выполнения предыдущих индивидуальных заданий студента по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачета приведены в общей части ФОС образовательной программы.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для зачета по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Устройство дымовой трубы.
- 2. Сверхзвуковое истечение газа из сопла.
- 3. Связь скорости проведения термодинамического процесса с необратимыми потерями энергии.
- 4. Понятие теплоемкости.
- 5. Получение активированных углей.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Расчет массовой газовой постоянной.
- 2. Расчет фазового состояния смеси углеводородов.
- 3. Расчет аммиачной холодильной установки.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Поверочный расчет трубчатой технологической печи методом самосогласования. Конвекционная и радиантная камеры.
- 2. Расчет эксергетичекого КПД аммиачной холодильной установки на каждой стадии процесса. Построение поточной диаграммы КПД процесса..

2.4.2.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.